A CONVENIENT METHOD FOR METHYLENATION OF CARBONYL COMPOUNDS. THE REDUCTIVE β -ELIMINATION OF 2-(PHENYLTHIO)ETHANOLS INTO TERMINAL OLEFINS USING TiCl $_{A}$ -LiA1H $_{A}$

Yutaka WATANABE, Manzo SHIONO, and Teruaki MUKAIYAMA
Department of Chemistry, Faculty of Science
The University of Tokyo, Hongo, Tokyo 113

2-(Phenylthio)ethanols readily accessible from carbonyl compounds and phenylthiomethyllithium were converted into terminal olefins in high yields by way of the reductive β -elimination on treatment with TiCl $_4$ and LiAlH $_4$ in the presence of tertiary amine such as 1,8-bis(dimethylamino)naphthalene or tri-n-butylamine.

In the preceding paper, $^{1)}$ it was reported that terminal olefins (III) were produced in good yields by the reductive β -elimination of benzoates of 2-(phenylthio)ethanols (II), prepared from ketones and phenylthiomethyllithium (IV), on treatment with TiCl_4 -Zn. It provides a convenient method for ketone methylenation, but the benzoylation of II is not always satisfactory, especially in the case of highly hindered alcohols.

In the present communication, we wish to report a method for the preparation of terminal olefins by the direct β -elimination of 2-(phenylthio)ethanols. The application of the $TiCl_4$ -LiAlH $_4$ reagent, 2 in the presence of 1,8-bis(dimethylamino)naphthalene, to 1,1-dibenzyl-2-(phenylthio)ethanol derived from dibenzyl ketone and IV resulted in the formation of 2-benzyl-3-phenylpropene in excellent yield. A remarkable shortening of the reaction time was accomplished when the reduction was carried out in a mixed solvent of benzene and dioxane, whereas it took 16 hr to complete the reaction in dioxane.

The following experimental procedure is illustrative; $^{3)}$ after addition of LiAlH $_4$ (10.5 mmol) to a suspension of the TiCl $_4$ (10.5 mmol)-dioxane complex in benzene (24 ml) and dioxane (19 ml), the mixture was refluxed for about 1 hr under an argon atmosphere to give a black colored solution. To metal complexes thus obtained was added 2-octyl-1-phenylthiomethylcyclopentan-1-ol and 1,8-bis(dimethyl-amino)naphthalene (1.5 mmol each) in benzene and dioxane (1 ml each) under refluxing and the reaction mixture was refluxed for additional 4 hr. The mixture was poured into 2N KOH aq. solution, extracted with petroleum ether after filtration, washed

with water and then dried (Na_2SO_4) . 2-Octy1-1-methylenecyclopentane⁴⁾ was obtained in 88% yield by distillation under reduced pressure; bp ca. 120°C/6 mmHg (bath temperature).

•							
R^{1}	R^2	Yields(%)		Conditions (II \rightarrow III)			
		114)	111 ⁴⁾	n ^{a)}	Base ^{b)}	Time(hr)	
PhCH ₂	PhCH ₂	59	96	6.5	A	5	
PhCH ₂	PhCH ₂	59	97	6.0	В	4	
CH ₃ (CH ₂) ₇ CH(CH ₂) ₃ -	∠	87	88	7.0	A	4	
Cholestan-3-one		61(α-OH)	95	6.5	A	5	
		30 (β-OH)	88	7.0	A	6	
$CH_3(CH_2)_{10}$	Н	93	74 ^{c)}	5.0	В	5	
$Ph(CH_2)_2$	CH ₃	d)	86 ^{e)}	6.0 ^{f)}	-	5	

Methylenation of Carbonyl Compounds via 2-(phenylthio)ethanols

- a) Molar ratio of $TiCl_4$ -LiAlH $_4$ /2-(phenylthio)ethanol. b) A=1,8-bis(dimethylamino)naphthalene, B=tri-n-butylamine.
- c) A mixed solvent of toluene and dioxane was used. d) Not is e) Overall yield from ketone. f) Molar ratio based on ketone. d) Not isolated.

Various 2-(phenylthio)ethanols were successfully converted into the corresponding terminal olefins in high yields as shown in the Table. 1,8-Bis(dimethylamino)naphthalene or tri-n-butylamine was effectively used in the reductive β elimination reaction to avoid side reactions such as dehydration of the alcohol forming inner olefins or vinyl sulfide, whereas triethylamine did not give a good result. A simplicity and usefulness of the present method was proved by the following experiment; when a THF solution of the 2-(phenylthio)ethanol obtained from 4-pheny1-2-butanone and IV was successively treated with the TiCl,-LiAlH, reagent without isolation according to a procedure described above, 2-methy1-4phenyl-1-butene⁴⁾ was isolated in 86% yield by distillation under reduced pressure; bp ca. 120°C/30 mmHg (bath temperature).

It is noted that the transformation reaction of carbonyl compounds to terminal olefins via 2-(phenylthio)ethanols reported here would provide a convenient alternative method for the methylenation of ketones and aldehydes.

The authors thank the Ministry of Education, Japan, for Grant-in-Aid (No 911506).

References and Notes

- T. Mukaiyama, Y. Watanabe, and M. Shiono, Chem. Lett., 1523 (1974).
 The TiCl₄-LiAlH₄ reagent was already reported from our laboratory as a characteristic reducing agent [T. Mukaiyama, N. Hayashi, and K. Narasaka, Chem. Lett., 291 (1973)]. More recently, it was reported by Mc Murry and Fleming that reductive coupling of carbonyl compounds including aliphatic ketones to olefins was satisfactorily performed by using the LiAlH₄-TiCl₃ system [J. E. Mc Murry and M. O. Fleming, J. Amer. Chem. Soc., 96, 4708 (1974)].
 2-(Phenylthio)ethanols (II) were prepared according to the method of Corey and Seebach except that N,N,N',N'-tetramethylethylenediamine was used in place of triethylenediamine [E. J. Corey and D. Seebach, J. Org. Chem., 31, 4097 (1966)].
 These compounds were identified by ir and nmr spectra.
- 4) These compounds were identified by ir and nmr spectra.